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Ab&wt- A method is proposed for the search of the confonnational isomerization paths and barriers 
to interconversion. Use of this method in the study of the ring interconversion of a-bglucose gives the 
minimal barrier for 1 C P C 1 isomerization. which is in agreement with the experimental data. 

The problems of elucidating the equilibrium con- 
formations and estimating their relative stabilities 
are readily solved by the methods of local search 
for the potential function minima if the starting 
approximations for geometric parameters are 
known with some accuracy. More complicated is 
the search for conformational isomerization paths 
(energetically favourable transitions between local 
minima) and transition barriers. This can be ex- 
plained by the fact that isomerization paths cannot 
be sought with the local search methods (the two- 
dimensional search which is usually made by the 
calculation of conformational maps presents a 
limiting case). 

Of all the known nonlocal search methods 
Gel’fand and Tsetlin’s approach (the valley method) 
is used throughout. is* Unfortunately this method is 
not sufficiently accurate for the search but gives 
only the regions of small changes of the function. 
This specificity being advantageous in the search 
of absolute minimum in the multiextremal problems 
is however rather unfavourable for an automatic 
search of an exact position of the saddle points. 
When accuracy of the search increases the Gel’fand 
method looses its nonlocal features and behaves as 
a common local search. 

In the present paper an automatic search method 
is proposed which provides high accuracy of the 
search and might be efficient in the solution of some 
conformational problems (search of the isomeriza- 
tion paths, transition barriers etc.). The paper also 
presents an example of the search for the equilib- 
rium conformations and estimating their relative 
stabilities, transition barriers and isomerization 
paths for a-u-glucose. 

The search of conformational isomerization paths 
Let x,, x,, . . . x, be the independent 

geometric parameters &d f(x1,x2,. . . ,x&the 
value of function which is calculated using the for- 
mulas for the potential energy. If in the region of 
the search there is such an ensemble of the points 

which (i) belong to continuous and monotonous 
curves, (ii) the first derivatives along the tangents 
at any point of each such curve are nonzero (or 
equal to zero at the extremum) while those along 
the normals to tangents always vanish, then we 
shah discuss the function f(xl,xt,. . . ,x,,) as that 
having the valley behaviour. 

It is natural to assume that (i) the valleys go 
over all local minima and (ii) the attraction region 
of the global minimum is larger than that of some 
other minimum. probably a rigorous proof of the 
assumption (i) can be found at least for some 
classes of functions. As far as condition (ii) is con- 
cerned a check can be made by computing the 
systems interesting for the conformational analysis. 

If the two assumptions mentioned above are 
true then from (i) it would follow that proceeding 
along the bottom of the valley one may Iind all the 
minima of the system, determine possible iso- 
merization paths, transition barriers and relative 
conformational energies. From (ii) it follows that 
a probability to get into a global minimum is higher 
than that of arriving to some other minimum. That 
is if a considerable number of the minima is found 
then one can choose from them the global minimum 
with a great deal of confidence. 

In the general case the search is begun at a 
random point A,, in the space of geometric param- 
eters then a subsequent local minimization is per- 
formed to arrive at the point A0 with coordinates 
(x(o) x(o) 

e&h idjid,. 
,x(O)) at which the value of function is 
In” order to make a choice of the first 

step let us explore the function behaviour in the 
vicinity of A0 and give increment h to such a vari- 
able in which the function changes least of all, e.g. 
the absolute value of the derivative 4fldx, is mini- 
mal. After the first step we reach the point u1 with 
coordinates (xi”’ + h, x2, . . . ,x:9. Starting from this 
point we apply local minimization by all other n - 1 
independent variables at the Iixed value of xii) = 
x\O’+ h. If high accuracy is required to find the 
bottom of the valley then the most efficient would 
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be a quadratic minimization procedure.’ Let the 
point A, with coordinates (xi”, xi*‘, . . . , xf’) and the 
value of function $I’ corresponds to a local mini- 
mum in n - 1 variables. 

A relative change of the function after one itera- 
tion step along the axes x,, x2,. . . ,x, can be written 
as follows: 

AI = Wlh, A, = 4l&, 
A3 = 4+/l&, . . ..A.=AjlAx,, (1) 

where 

4= f(d,“’ + h, x;l’, . . . , XL”) -f(x;O’, x(gO’, . . . , x’,‘); 
Ax, = xi” -x(p), (i = 1,2, . . . ) n). 

A subsequent step is analogous to a preceeding 
one and made in the direction of the least change in 
A,. Then follow both the minimization procedure 
and repetition of the process. 

Fig 1 shows an example of the search of the 
valley bottom for a two-dimensional case at h = O-5 
and 1.0. At h = 0.5 the local minimization starts 
from the points a,, u2,. . . , while at h = I-O-from 
the primed points a;, al, . . . . As seen from Fig 1, an 
efficiency of the search depends essentially upon 
the choice of step h. In the general case the smaller 
the value of h the greater the accuracy would be 
attained in the search of the valley bottom and 
saddle point (and hence transition barrier). But a 
decrease of h leads to the greater number of itera- 
tion steps. Thus it would be reasonable to employ 
optimal values of h. 

An experience of the calculation with the given 
potential functions of the conformational problems 
indicates that for any part of the valley optimal 

6.0 

0 I.0 20 3.0 40 60 6.0 

X2 

Fig 1. An example of a two-dimensional search by the 
modified valley method with fixation of essential variables. 

values should satisfy the following condition 

0.7 G hx,/h s 2.0 (2) 

where xl is a maximal change of the variable in 
reaching the point Ai+’ from A,. (Fig 1). It is con- 
venient to use the following relations to provide a 
relative adoptation of the step: 

kh,_, if AA!‘-“/hJ_, > 2;0 
hj = h,_,/k if tit’-‘j/h,_, < 0.7 (3) 

hJ_,/2 if Ax”-“/h,_, > 2.5 L 

where j is the number of iteration steps; k = 0.8+ 
0.95 is a positive factor close to unity. 

Several schemes can be proposed for the or- 
ganization of the search. 

(1) After the first iteration the step is done from 
point A 1 (xi”, XY’, . . . ( x:‘) along the line Ad I (Fig 
l), then the value of the essential variable (in which 
the function undergoes least change) is fixed and 
the function is subjected to minimization. In this 
case the starting points for local minimization would 
not be far from the bottom of the valley. At such 
search organization one may essentially save time 
because of the lesser number of iteration steps at 
each local minimization. 

(2) Employing an experience of the earlier steps 
one may guess the coordinates of the next points. 
For example assuming that the function is mono- 
tonic one may write 

&(‘,I = ,,, . tic’,-I’ (4) 

where m is a proportionality coefficient known from 
the previous test. 

Assuming, e.g., m = A.~~~-“/dr~~-*‘. Eq. (4) takes 
the form 

&jJ) = [&j’-l’]Z/h;‘-” 
(5) 

In spite of the fact that the time for each iteration 
step is shorter when one of the parameters is fixed, 
an increase in the accuracy would be due to a longer 
search time. Thus a choice of appropriate accuracy 
is an important criterion in organizing the search. 

Computation of isomerizution paths of a-D-glucose 
The conformations of particular intermediate 

forms of the cyclic molecules and their energies 
have been discussed. s*4 However nowadays this 
problem has not yet been studied in sufficient 
detail. The method described above enables us to 
automatically search the isomerization paths and 
their respective transition barriers by optimizing 
the geometry at each step. 

As a first attempt to employ this method we com- 
puted the isomer&&ion paths and the barriers to 
the ring interconversion for the molecule of U-D- 
glucose. 



The atom-atom potentials’ method3s5 with an methods of quantum chemistry, at the same time 
account of both the torsional and electrostatic the experimental data on charge distribution being 
interaction energies was used in the conformational almost fully absent. In this paper we introduce a 
calculations. In such an approximation the strain constant k defining it as a correction factor and not 
energy of the a-Dglucose molecule may be written the dielectric permeability of a medium. In the 
in the following way conformational calculations, a correction factor k 

which provides better agreement with experiment 
u,tr = & f(Ql) + 332q&WJ) usually exceeds unity.@*‘O 

The numeration of the atoms of a-D-glucose and 
+f 7 CJg”(l +cos 3&+# 7 CXAaJ* (6) the internal parameters are shown in Fig 2. The 

In this equation the first sum presents the energies 
of nonbonded and electrostatic interactions; ru a P’ 
distance between nonbonded atoms, entering the 
potentials of interatomic interactions which have 
the form of 6-exp 

f(r) = -M ree + N exp (- qr), (7) 

M, N, 9 being the empirical parameters universal 
for a particular pair of atoms. 

The electrostatic energy is calculated in the 
monopole approximation, 9 being atomic charges 
(in electron units) and k being usually classified as 
the dielectric constant of the medium. The torsional 
potentials (second sum in (7)) have, as usual, a 
threefold symmetry, cpc being rotation angles around 
the bonds of a ring, U r’ empirical constants depen- Fig 2. Molecular geometry of a-@ucose with intemal 

dent on the type of a bond. The last term of (7) 
parameters. 

presents the energy of bond angles’ deformation, 
Aal being deviations of bond angles from their ideal method of calculation, the atoms’ coordinates 

values and CI elastic constants. through the values of the independent geometric 

Parameters M, N, 9 necessary for conformation parameters and the problem of taking into account 

calculations have been elucidated by Dashevskys*6 the ring-closure conditions are discussed in our 

from geometries of overcrowded molecules and paper.’ In these calculations the following slight 

thermochemical data. Their values are given in simplifications were used: 

Table 1. Elastic constants for bond angles’ defor- (a) interaction between the hydroxylic hydrogens 

mations, Cc and Cc,, assumed to be equal to 30 and and the atoms bonded with C (6) is neglected. 

65 kcal . mole-‘. rad-“, correspondingly, 109*5” (b) the valence bonds are rigid, r(C-C) = 153, 

and 90” being “ideal” angles for tetrahedral carbon r(C-C) = l-42, tic--H) = l*lOA, the ghrcoside 

and oxygen atoms.’ The atomic charge distribution bond C-C being equal to 1.39 A. 

was taken from.8 Torsional constants Uc-c and (c) the bond angles HCO and HCC are respec- 

UC_,, assumed to be equal to 3 and 1 kcal . mole-‘, tively 106.8 and 107*8q as taken from the calcula- 

correspondingly. tion of the optimal conformation of a-D-glucose 

The vaguest point of parametrization is use of a (C 1). 

monopole approximation for electrostatic energy. For estimating a degree of approaching the ex- 

One can hardly estimate the degree of confidence periment due to electrostatic contribution to the 

for atomic charges obtained by semi-empirical potential function as well as to make a choice of 
the correction factor, an equilibrium conformation 

Table 1. Parameters of atom-atom potentials used in of a-u-glucose was computed for k equal to l-0,3*5, 

present calculations 7.0, 10.0, 20.0 and UJ (Table 2) (choice of indepen- 
dent parameters is described below). 
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Interaction 

H...H 
H...C 
H...O 
c...c 

M kcal.dja 
’ mole 

40.1 
15s 
122 
476 
441 
346 

&E!. 
’ mok 

2%. 1w 
3.28. 10’ 
5.75. 1w 
3.77.w 
6.37. IO 
9.65. 10 

A comparison with experiment 11 shows that the 
4, A-1 torsional angles cpl are most sensitive whereas the 

bond angles 4 are less sensitive to the electrostatic 
5.200 
4.130 

interactions. A satisfactory coincidence with the 

4.727 
experimental data can be observed for all equilib- 

3.513 rium structures of Table 2. Moreover effects of 

3.881 electrostatic interactions on the value and shape of 

4.333 the potential barriers were investigated (Fig 3). the 
shape of the barrier being more sensitive than its 
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Table 2. The equilibrium conformation of chair C 1 of cx-D-glucose at daferent values of k 

: 3.5 I.0 109.4 110.9 112.0 110.9 109.8 109.5 114.4 110.3 Ill.7 III.7 113.3 Ill.9 57.2 55.8 -50.0 -52.9 47.5 52.3 -53.7 -55.3 62.0 59.4 -63.0 -59.2 
3 7.0 111.2 110.6 109.4 110.1 111.7 113.6 55.4 -53.4 53.2 -55.6 58.7 -58.3 

4 10.0 111.3 110.6 109.4 110.0 1 Il.7 113.7 55.3 -53.6 53.3 -55.6 58.5 - 58.0 
5 20.0 111.4 110.5 109.4 109.9 Ill.7 113.8 55.1 -53,7 53.8 -55.7 58.3 - 57.7 
6 m 111.6 110.4 109.3 109.9 111.7 113.9 55.0 -53.9 54.1 -55.8 58.0 -57.4 
7 110.1 111.1 109.8 I II.2 NW7 113.8 54.1 -51.3 53.3 -57.5 62.2 -60.9 11 

_ 6.0 

3 
40 

L 

-60 -60 -40 -20 0 20 40 60 60 
L 

% 
Fig 3. Inversion barrier of the heterocycle of a-mglu- 

coseatkequalto1,3.5 aadm. 

value. In further calculations a “best” value of k 
equal to 3-S was adopted. Nevertheless we present 
in Fig 3 the results of calculations (V,, as a func- 
tion of pe) obtained for three values of k (see Table 
6 for discussion) 

The conformational transitions were computed 
using six independent parameters v~, cp,, ps, a4, a5 
and Q, responsible for the inversion of the hetero- 
cycle (Fig 2). The parameters cp,, (p,, cp,, a,, a, and 
a3 are dependent and could be estimated from 
Eqs (19-24)’ Angles (ol were counted from the cis- 
position; (p,‘s were taken positive at the clockwise 
rotation of the remote (i+ 1)th bond about the 
nearest (i- I)th bond in looking along the i-th bond 
while the negative values were obtained by counter- 
clockwise rotation. 

It should be noted that at the conformational 
transitions of a-o-glucose the torsional angles 
undergo the most variation in respect to the bond 
angles. Thus at the sufficient accuracy one may 
assume that the supersurfaces satisfying the con- 
dition Cl,, ((p4, vs, qa. al, a,, aJ = const are three- 
dimensional (cpc cpS, cps). Apparently the search 
along the valleys would be successful only if the 
suggestions (i) and (ii) given above are valid. 

Therefore in the study of the conformations of 
a-o-ghtcose it is logical to start with a check of 
these suggestions. We investigated the region of 
internal parameters (cp,. (p5, (oa, a,, a,, as) by making 
a random choice with subsequent local minimiza- 
tion (until the difference fn_, -f. where n is the 

number of iterations in local search, would be less 
than 0.5 k&/mole). A region was regarded as 
allowable if all given internal parameters provided 
the closure of the heterocycles. 127 random start- 
ing points were chosen within the allowed region, 
optimization in all the variables distributed them 
in the local minima at the desired accuracy. 

Fig 4 shows distribution of points within the 
space of essential parameters (v,, q5, (P,,). It can be 
seen that only small regions near the vertices of 

D‘ 

u: 
Fig 4. Distribution of phase points in the space of essen- 
tial parameters (9,. cpS. & after random choice and subse- 
quent minimization in the six internal parameters (CQ, as, 

~,cp,. cps, pps) at an accuracy of 0.5 k&/mole. 
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cube with cpc = -70+70” are the allowed regions. 
In the case where (pI, cpJ, and pe have the same signs 
the allowed region would be essentially contracted 
(vertex D) or completely forbidden (vertex B’). 

Phase points are most concentrated at the ver- 
tex A of the cube (Table 3), that is in the region of 
C I conformation. This can be explained by the 
greater number of valleys converging to a local 
minimum of C I conformation in respect to any 
other minimum. On the other hand C I conforma- 
tion is known to be most stable. Hence in this case 
our suggestion (ii) is reasonable. 

Table 3. Distribution of phase points of 
a-r>-glucose in the space of internal 

parameters 

Distribution The number of points in 
region phase region 

A 39 
B 13 
c I5 
D 1 
A’ 21 
B’ - 

C’ 22 
D’ 16 

Total 127 

Next step in the study of cy+gIucose included 
the calculation of its isomerization paths. The 
search for local minima and the valley bottom was 
performed to an accuracy of 0.25 kcaI/mole (this 
was completed when&, -fn was less than 0.25). 

The isomerization paths in the space (cp,, cp5, cps) 
with an indication of the intermediate strain ener- 
gies are given in Fig 5. The values (pI, (p5 and qe 
could be readily found for any intermediate form 
from a position of phase point in the space and its 
projection on the plane (cpJ, cpe). 

Positions of the respective forms of Reeve’s 
boats12 for a symmetrical molecule are denoted by 
circles B I, 2B, 83, 1 B and 3B. The plane passing 
through all forms of the boat (Hendrickson’s 
pseudorotatiot?) makes a dihedral angle equal to 
55.7” with ((P~,(P,J plane. For a-D-glucose the 
pseudorotation follows a curve close to the ideal 
(dash line). The conformations Cl and IC locate 
at the opposite sides from the pseudorotation plane, 
thus Cl is above B3 while IC-under 38, transi- 
tions C 1 * 1C being possible only through the 
intermediate boat forms. 

Five possible transitions to the pseudorotation 
space from Cl (and three from IC) were detected 
at the search for the isomerization paths. 

Fig 6 shows the strain energies and positions of 
the atoms with respect to the plane passing through 
0(5’), C(l’), C(2’) or C(3). C(4’). C(5’) for some 
intermediate forms being in the isomerization path. 

Fig 5. lsomerization path of a-~glucose. Strain energy 
of the molecule is given in the intermediate points. 

As seen from Fig 6 at the chair-boat transition the 
largest strain energy (saddle point) corresponds to 
such a conformation in which five atoms of the 
heterocycle locate approximately in the same plane 
while the sixth atom gets out of it over O-7 + O-9 A, 
each isomerization path being specified by the exit 
of a certain atom. Thus the chair conformations C 1 
and 1C should provide at least six isomerization 
paths, considerably less being found by us (only 
three in the case of the 1 C conformation). This can 
be explained by asymmetry of the a-D-glucose 
molecule; therefore an exit of each atom of the 
heterocycle from the plane of the other five atoms 
corresponds to the different values of strain 
energy. This difference may be so large that the 
exit of a certain atom becomes less probable. It is 
also not excluded that some of the paths have 
simply not been detected. 

AU isomerization paths from the chair conforma- 
tions C 1 and I C pass the region of pseudorotation 
and are specified by the height of the potential bar- 
rier and the length of the phase transition. As seen 
from Table 4, transitions through saddle points 
corresponding to the exit of C(l’), C(2’) or C(5’) 
atoms from the plane of other five atoms are most 
favourable in terms of strain energy (in the iso- 
merization from 1C conformation an exit of C(5’) 
carbon is of low-probability). 
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Fig. 6. The intermediate forms in the isomerization paths. The displacements of atoms from the plane 
C(Y), C(l’), C(2’) or C(3’). C(4’) are scaled. The respective strain energy is given for each inter- 

mediate form. The region of pseudorotation is shown by a dotted line. 

Table 4. Potential barriers and get in regions in the isomerization from C 1 and 1 C conformations 

L9omerization from c 1 Isomerization from 1 C 

Nos. Exit of rJ* Get in u* u 10 Get u* 
atoms in inthe region in the inthe in inthe 

the saddle saddle atthe get in saddle region get 
points of points transition region points at in 

phase kcal/mok kcal/mole kcal/mole the region 
space transi- kcall 

tion mole 

1 C(l’1 10.9 83+lB 8.8 9.4 5.4 
2 C(2’1 10.8 E2G-18 7.4 9.3 sly28 4-o 
3 C(3’) - - - - - - 
4 C(4’1 11.5 Ble-28 4-o - - - 
5 CU’) 10.8 83~28 4.9 13.3 82 8.3 
6 C(6’) 11.7 83 9.4 - - - 

*Strain energy of the chair conformation C 1 is taken as a reference point. 
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Table 6. Experimental and calculated barriers to inversion for some hexacyclic 
molecules 

No. Molecule 
Experimental data 

kcal/mole 
Calculated 

data Ref. 

Cyclohexane-d,, 

Tetrahydropyrane 
Tetracetate of 

/3-D-rybopyranose 
a-D-ghlCOSe 

10.6 15 
10.5 16 

11.0 170 
14.3 3b 

IO.5 -t- 1.2 14 

10.5 17 
IO.8 this work 

OExtended Hiickel method. 
bThe conformational calculation with inclusion of non-bonded interaction, 

bond angles deformations and torsional energies. 

Table 5 lists the bond (013 and torsional angles 
(cp,) and the energies computed for the chair and 
boat conformations of a-D-ghCOSC. The conforma- 
tions 3B and 83 have the highest strain energies 
due to an overlap of three bonds at the torsional 
angles C(2’) * C( 1’) and C(5’) + C(4’) with bulky 
substituents. 

It should be noted that our results somewhat 
disagree with published data.13 These authors have 
employed the method of atom-atom potentials in 
the study of 8 possible forms of the pyrane cycle 
and arrived at the conclusion that the conforma- 
tions C 1, B 1 and 38 are the most stable whereas 
the forms IB and B2 and 3B are most unstable (U,, 
= 40 kcal/mole). In these calculations all pyrane 
cycles were taken as rigid (the geometric param- 
eters have been cited only for the Cl form) al- 
though no experimental data is available for the 
choice of geometric parameters of all boat and 1 C- 
chair conformations. 

We revealed two local maxima in the region of 
pseudorotation: one with an energy of 4.0 kcallmole 
in the region between the boats 2B and Bl, an- 
other with energy of 7.4 kcal/mole between the 
forms 1B and 82. Table 4 shows the geometric 
parameters and strain energies for the equilibrium 
conformations of a-D-glucose. 

Thus pseudorotation is hindered and has the 
transition barriers of 5.4 and 7.4 kcal/mole (from 
the first minimum, U,, = 4.0 kcal/mole) and 2.0 and 
4-O kcal/mole (from the second minimum, CJ,, = 
7-4 kcal/mole). It should be noted that in view of 
the hindered pseudorotation, chair-chair transi- 
tions oia the twisted boats are more favourable 
energetically (Fig 6). 

In 1967 Gatti et aLI determined the free activa- 
tion energy of the tetrahydropyrane cycle from 
NMR data and equilibrium constants. Its confor- 
mational mobility has been found to be insensitive 
to the effect of oxygen. The predicted inversion 
barriers of cr-D-glucose almost match the experi- 
mental data and calculated data for cyclohexane 

and some oxygen-containing heterocycles (Table 6). 
It can be noted that according to the conceptions 

of classical physics, all the particles whose kinetic 
energy (atomic vibrations) exceeds the potential 
energy pass through the barrier. As for transition 
paths of the particular molecules their prediction is 
rather difficult (they depend upon the initial pulse 
and a kinetic energy excess). It is evident that the 
transition pattern in the phase space closely ap- 
proaches the saddle point. Experimental energies 
are measured namely for the saddle points. 

In conclusion it should be pointed out that prob- 
ably our isomerization paths are typical for all 
hexacyclic molecules with saturated carbon-carbon 
bonds and tortional potentials having a three-fold 
symmetry axis. 
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